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Using a probabilistic approach, the deterministic and the stochastic parallel 
dynamics of a Q-lsing neural network are studied at finite Q and in the limit 
Q---, ~ .  Exact evolution equations are presented for the first time-step. These 
formulas constitute recursion relations for the parallel dynamics of the extremely 
diluted asymmetric versions of these' networks. An explicit analysis of the 
retrieval properties is carried out in terms of the gain parameter, the loading 
capacity, and the temperature. The results for the Q ~ o~ network are compared 
with those for the Q = 3  and Q = 4  models. Possible chaotic microscopic 
behavior is studied using the time evolution of the distance between two 
network configurations. For arbitrary finite Q the retrieval regime is always 
chaotic. In the limit Q ~ co the network exhibits a dynamical transition toward 
chaos. 

KEY WORDS: Graded-response networks; parallel dynamics; extreme dilu- 
tion; chaotic behavior; probabilistic approach. 

1. INTRODUCTION 

In a recent  pape r  tt~ we have  s tudied  the paral le l  dynamics  of  ex t remely  

d i lu ted  a s y m m e t r i c  Q-s ta te  Po t t s  and  Q-Is ing  neura l  ne tworks  using a 
p robab i l i s t i c  app roach .  ( F o r  an  extens ive  list of  references on Q-s ta te  

n e t w o r k s  we refer to tha t  paper . )  This  dynamics  has been so lved  explici t ly 

for Q = 3. In par t icular ,  the d y n a m i c a l  c a p a c i t y - t e m p e r a t u r e  d i a g r a m  and  

the  t e m p e r a t u r e  dependence  of  the re levant  o rde r  pa rame te r s  have been  
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obtained. It has been argued that, to determine the optimal retrieval 
quality of the Q-Ising network, one has to take into account the main 
overlap, the neuron activities, and the Hamming distance measuring the 
resemblance between the microscopic state of the network and an embedded 
pattern. 

In the present work we extend these results to the case of analog 
neurons (Q---, ~ ) .  Discussions on the dynamics of related networks of 
analog neurons in the case of extreme dilution can be found in refs. 2-5. 

Furthermore, we provide a detailed comparative discussion of the 
macroscopic structure of the retrieval region for the Q =  3, Q =4,  and 
Q ~ ~ Ising models at arbitrary temperatures. 

Next, we study the microscopic properties of the retrieval dynamics for 
these networks. Indeed, since the deterministic evolution is defined initially 
in the configuration space, it is natural to investigate neural networks as 
(discrete-time) dynamical systems. After the paper of Gardner c6~ and espe- 
cially after the rigorous results of Newman tTI it has become clear that for 
symmetric neural networks the vicinity of any stored pattern is rather com- 
plex. It contains a hierarchically structured cloud of fixed points which has 
a basin of attraction separating it from the clouds corresponding to the 
other embedded patterns. Since a detailed analysis of the attractors is com- 
plicated even in the simpler case of dynamical systems with only a few 
degrees of freedom (see, e.g., ref. 8), it is obvious that in a neural network 
with an extensive number of embedded patterns the overall structure of the 
clouds of attractors corresponding to different patterns is far from being 
clear. 

In ref. 9 the simplification of the (continuous-time) dynamics due to 
the asymmetry of the random couplings has been used to discuss the 
asymptotic behavior of such a network with graded-response neurons in 
the vicinity of the fixed points. An extremely diluted version of this model 
has been considered in ref. 10. It was discovered that the time autocorrela- 
tion function of a single neuron is decaying (i.e., the evolution is mixing) 
in a certain region of the model parameters. Because the corresponding 
Lyapunov exponents are positive, this regime was called chaotic. Recently 
an analogous approach has been followed in ref. 11 for a fully connected 
network with discrete parallel updating. In this case the chaotic regime can 
be suppressed by introducing external noise. 

In ref. 12 dynamical properties of diluted networks of analog neurons 
with finite-range interactions are studied. Attention is focused on the 
Jacobian of the nonlinear mapping defining the dynamics, Due to the 
randomness of the embedded patterns this Jacobian has a random nature. 
Using a Gaussian Ansatz, the Lyapunov exponents for the motion in the 
configuration space are extracted numerically from this Jacobian. It is 
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found that the largest Lyapunov exponent can be positive, implying that 
the microscopic evolution can be chaotic. 

Local instability between arbitrarily close configurations has been used 
as a characterization of chaos in refs. 13-15 for extremely diluted binary 
networks, diluted asymmetric spin-glasses, and layered networks of binary 
neurons. The same line of reasoning has been followed for higher-order 
binary networks with Gaussian background noise in ref. 17. In this work 
we generalize this approach to Q-Ising networks and networks of graded- 
response neurons. 

The rest of this paper is organized as follows. In Section 2 the deter- 
ministic and the stochastic dynamics of the fully connected Q-Ising neural 
network are defined. The Hamming distance is introduced as a macro- 
scopic measure of the resemblance between the microscopic network state 
and an embedded pattern. In Section 3 the evolution equations for the 
overlap and the activity in extremely diluted versions of these networks are 
derived. An extensive analysis of the retrieval regime in the Q = 3, Q = 4, 
and Q ~ c~ models is given in Section 4. The results are synthesized in 
capacity-gain diagrams, accompanied by tables to clarify the structure of 
the macroscopic retrieval dynamics (attractors, repellors, saddle points). In 
Section 5 the microscopic properties of the retrieval dynamics are studied. 
Based on the exact solvability of this dynamics, an explicit analysis in 
terms of the Hamming distance shows that two initially close trajectories 
that are correlated with only one stored pattern strongly repel each other. 
For Q-state neurons this occurs in the whole capacity-gain plane, for 
graded-response neurons there exists a transition line in this plane at which 
the chaotic behavior sets in. This discussion is a generalization of the 
results of refs. 13-15 to the case of Q-Ising networks. Finally, Section 6 
contains some concluding remarks. 

2. THE M O D E L  

Consider a network A consisting of N neurons which can take values 
in a discrete set 5e={-l=st<sz<. . .<so_t<sr The p 
patterns to be stored in this network, {~,.uESe}, i E A = { 1 , 2  ..... N}, 
p ~ ' =  {1,2 ..... p}, are supposed to be independent and identically 
distributed random variables (i.i.d.r.v.) with zero mean, E [ ~ u ] = 0 ,  
and variance A = Var[~; ] .  The latter is a measure for the activity of the 
patterns. 

Given a configuration ~ a =  {aj},j~A, the local field in neuron i~A 
is 

h,(aA\,)= ~ J~aj (I) 
j ~  A\ i  
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where the synaptic couplings are given by 

1 
jO.=NA ~ ~u~ (2) 

The stochastic parallel dynamics of this network at temperature T =  fl-1 is 
defined by the transition probabilities 

exp[--[3ei(sklaA\i(t))] (3) 
Pr{ai(t + 1 ) = Sk e ~ I t;A\i(t) } -- E,~ .r exp[ -- fl~,(sloA\i(t))] 

Here the energy potential ej(sl~) of neuron i is taken to be ~18~ 

ei(sl~A\i)= -�89 s-bs2), b > 0  (4) 

At zero temperature the dynamics (3)-(4) at ie  A takes the form 

tr i( t)~ai(t+ l)=Sk :min~i(sla,~\i(t))=ei(Skl~A\,(t)) (5) 
s E ~ "  

This rule is equivalent to using a gain function g(.) which has, since 5 e is 
discrete, a steplike shape 

tr,(t + 1 ) = g[h~(~ A\,(t)) ] 
O 

g(x)= ~ s , [ O ( b ( s , + s , + l ) - x ) - O ( b ( s k _ ~ + s k ) - x ) ]  (6) 
k = l  

where S o = - o o  and S Q + I = - 1 - 0 0 .  In the sequel we will restrict the 
discussion to the case of equidistant states such that 

5#=5a0= S k = - - l +  ~ - - f  , k = l , 2  ..... Q (7) 

Consequently, in the limit Q--, oo, i.e., for analog neurons, the step 
function (6) becomes the piecewise linear function 

1 x x 

To measure the macroscopic resemblance between the microscopic 
state of the network and an embedded pattern we introduce the Hamming 
distance 

1 
d.(n.(t),  ~ " ) = ~  ~ [-a/(t)--~','] / 

i~A 

1 1 2 
= ~  E (~i : )2+~ E [ a i ( t ) ] 2 - ~  E ~i'a,(t) (9) 

i~A i~A i~A 
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This relation naturally leads to the main overlap 

1 mA(t)=--N- ~ ~ ~oi(t) 
i E A  

and the arithmetic mean of the neuron activities 

1 
a A ( t ) = ~  ~ (G i ( t ) )  2 

i E A  

569 

(10) 

(11) 

3. EVOLUTION EQUATIONS AFTER EXTREME DILUTION 

Suppose that the initial configuration {a,.(O)}, i~A, is a collection of 
i.i.d.r.v, with mean E[a,.(O)] = O, variance Var[a~(O)] = a(O) and correlated 
with only one stored pattern: 

E[~a~(O)]=ru.,.moA, m o > 0  (12) 

Following the analysis in ref. 1, we arrive at 

h i ( a ( 0 ) ) -  lim hi(~,~\i(0)) ~ ~m~(0)+  [=a(0)]t/2 ~,V(0, 1) (13) 
N ~ o o  

where, as indicated, the convergence is in distribution ~6) and where the 
quantity .At(0, 1) is a Gaussian random variable with expectation 0 and 
variance 1. 

This allows us to derive the first time-step in the evolution of the fully 
connected network. However, as explained in ref. 1, the difficulty in this 
type of system is the strong feedback as well as the complicated structure 
of the correlations. Therefore we consider the extremely diluted version of 
the network. The most important consequence of this fact is that the 
architecture of the network gets the structure of a directed tree with an 
average number of incoming and outgoing connections both equal to c. It 
is assumed that c ,~ N. It is then justified to first dilute the system by taking 
the limit N--* oo and second, in the diluted system, to apply the law of 
large numbers (LLN) and the central limit theorem (CLT) by taking the 
limit c--* ~.~1~) The probability to have feedback in the system is zero and 
the correlations are now treelike. Adapting the structure of the network in 
this way also implies that the averages, e.g., m"(O) in (13), have to be taken 
over the treelike structure and that the loading ~ is redefined by p =ac.  
Furthermore, {~,.(1)}, i t  I%1, is a collection of i.i.d.r.v, correlated with only 
the vth pattern, such as the {a;(0)}. Hence the first step dynamics 
describes the full time evolution of the network. 
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For zero temperature, (13) directly leads to "~ 

f -b oc~ a(t+ 1)= Dz((gZ({"m~(t)+ [ea(t)]l/2z))) (14) 

i 
+ ~ o  I 

m"(t+ 1) = 6.,v Dz~ ((~"g(~VmV(t)+ [o~a(t)]l/2z))) (15) 

where g(.)  is now an arbitrary input-output function, ( ( - ) )  denotes 
the average over the distribution of the patterns, and Dz= 
& [exp( - z~/2)]/(2~)1/2. 

For nonzero temperatures, (13) gives, taking also the average over the 
temperature in the sense of (3), 

(( - )) -~  Dz sZ(r + [ota(t)] 1/2 z) (16) a(t+ 1)= f ~  

mU(t+l)= ~"f Dze(~VmV(t)+[cta(t)]t/2z) (17) 
- -  o 0  

where we have introduced the notation 

Y'.~, ~e o f(s) exp [�89 - bs) ] 
f(s)(h)= Es,~ee exp[�89 (18) 

We remark that the Y',~eq becomes an integral over s for graded-response 
neurons. 

4. M A C R O D Y N A M I C S :  R E T R I E V A L  

We now discuss the information concerning the macroscopic structure 
of the retrieval dynamics which can be extracted by analytical and numeri- 
cal methods from the fixed-point equations (14)-(17). 

It is necessary to distinguish among three different types of solutions 
to these equations. The zero solution Z is, evidently, determined by m = 0 
as well as a = 0. A sustained activity solution S is defined by m = 0 but 
a :/: 0. Finally there are solutions with both m r 0 and a r Nonattracting 
solutions of the last type are denoted by NR (for nonretrieval), attracting 
ones by R (for retrieval). 

For the Q = 3  system at T = 0  we have that 6e 3 = { - 1 , 0 , 1 } .  The 
explicit form of the fixed-point equations is given in ref. 1. The solution Z 
is stable for any value of b and a. Solutions S satisfy the equation 

a:,-Er I  1 (19) 
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where 

E r f r x ]  = v/rt  dt e (20) 

Their  s tabil i ty is de termined by the sign of the eigenvalues 

,~l(a) = -- 1 -~ (2~c~a)l/2 exp -- ~ (21) 

22(a) --- -- 1 4 (2rcea3)t/2 exp -- ~ (22) 

If e > e s ( b ) =  (b /B)  2, B,~0.576, there are two solut ions to (19), which we 
denote  by al  and  a 2 < a ~ .  We find that  2 2 ( a l ) < 0  and 2 2 ( a 2 ) > 0  for any 
values of b and e. The values of 2~(a~) and 2~(a2) depend on b and cc 
changing the stabil i ty of S~ = ( 0 ,  a~) and $ 2 =  (0, a2) as indicated in the 
table in Fig. 1. 

In the region below the curve e c ( b )  there is a retrieval solut ion R. The 
value of CCc(0) is 2/rc=0.637 and increases to cc=0.891 at  b=0 .405 .  At 
b ~ 0.484 there is a steep decrease in c~ c with a long tail extending up to 
b =  1. At the upper  branch of ~ c ( b )  (solid par t  in Fig. 1), the solut ion R 
goes cont inuous ly  to the solut ion S~, making  the lat ter  stable. At the lower 
branch of e c ( b )  (dashed par t  in Fig. I)  the solut ions R and N R  coalesce 
and d i sappear  together.  The precise numerical  values of this branch of 
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Fig. 1. The (=, b). diagram for the Q = 3 network with uniform patterns (A = 2/3) at T= 0. 
The curve Ctc(b ) denotes the boundary of the retrieval region. Below the curve as(b ) there are 
no sustained activity solutions. The full line denotes a second-order transition, the dashed line 
a first-order one. The line OPT indicates the network with optimal parameters. The structure 
I-IV of the retrieval dynamics is explained: a denotes an attractor, s a saddle point, and r a 
repellor. 
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ac(b) depend explicitly on the distribution of the patterns. To fix the ideas 
we take this distribution to be uniform in all figures. 

Concerning the retrieval properties of the neural network it is impor- 
tant to observe that in the retrieval regime, R is never the only attractor 
in the (m, a) plane. Its basin of attraction is always limited by at least one 
attractor on the axis rn = 0. Furthermore, at any fixed a, a value of b can 
be determined where the Hamming distance of R is minimal. The line of 
these optimal b is indicated by OPT in Fig. 1. Note that this line ends, of 
course, at the maximal value of ac(b). 

For the Q = 3  system at T # 0  explicit formulas for the fixed-point 
equations are given by (65)-(70) in ref. 1. Formulas analogous to (19), 
(21), and (22) can be computed from those equations. At sufficiently low 
temperatures the T = 0  features of the (a, b) diagram are recovered. It is 
evident that Z is no longer a solution. It is now, continuously in T, 
replaced by a new sustained activity solution. Furthermore, as a function 
of increasing T, ac(0) slightly increases and then decreases (see also Fig. 3 
in ref. 1). At moderate temperatures (e.g., T=0.10 in Fig. 2) a more 
qualitative change has taken place. For each b and a only one sustained 
activity solution S is left. Below the curve ac(b) there is a retrieval solution 
R. If S is a saddle point, R is the only other solution to the fixed-point 
equations and the transition at ac(b) is continuous. If S is stable, it is 
separated from R by yet another solution which is the saddle point NR. At 
high temperatures the region of instability of S and the retrieval region 
coincide. Summarising, the introduction of external noise can, depending 
on 0c and b, enlarge the basin of attraction of the retrieval solution. 
However, the quality of retrieval (in terms of Hamming distance) gradually 
deteriorates as T increases. 
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Fig. 2. As in Fig. 1, for T=0.10. There is no curve Ocs(b ). 
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Fig. 3. T h e  evo lu t ion  of  the op t ima l  (ct, b)  line for the ne twork  defined in Fig. 1 as a 
funct ion  o f  7'. 

The temperature dependence of the optimal b, i.e., the line OPT, is 
depicted in Fig. 3. We observe that the line shifts completely to b = 0 with 
increasing temperature. 

Next we consider the Q = 4 model. In this case ~ = { - 1, - 1/3, 1/3, 1 }. 
Starting from the general equations (14)-(15) at zero temperature, fixed- 
point equations can be derived in a straightforward way. For any value of 
b and 0t a solution S exists with a given by 

8 [ 4b/3 ] 
a = 1 - ~ Erf [_(2~a),/2_1 (23) 

Observe that a = 0 is not a solution to (23). The stability of S is determined 
by the sign of the eigenvalues 

4 1 [1 ( (4b/3)2"~1 (24) 
21(a)=--l+3(2nota)l/2 ~ + e x p  2~a , / ]  

8 4b/3 f (4b/3)2"~ (25) 
J'2(a)= -- l +'9 (2n~a3)l/2 exp ~ 2eta / 

For any b and 0t we find that 22(a)< 0. However, for a given b there is a 
value of ~, i.e., Cxc(b ), where ).l(a) changes sign. For ct<ctc(b), 21(a) is 
positive such that S is a saddle point. For ct < Ctc(b ) there is at least one 
retrieval solution. In the region indicated by I in Fig. 4, there are two 
attracting solutions with m :~ 0, denoted by R~ and R2. They are separated 
by a saddle point NR. The solution with the higher overlap m is the real 
retrieval solution: it is closest in Hamming distance to the embedded 
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Fig. 4. As in Fig. 1, for the Q = 4  network with uniform patterns (A = 5 / 9 )  at T = 0 .  

pattern. In the limit b ~ ~ there exists, for ~<CCc(OV)= 2/~, a retrieval 
solution (m 4:0, a -  1/9) with m given by 

1 3 m  m 
m = ~  E r f I ~ l  + I  E r f I ~ ]  (26) 

Because the line ~c(b) is the limit of the retrieval region as well as the 
limit of the instability region for S, it is clear that there is a continuous 
transition from R to S at this line. 

Concerning the retrieval properties of the network, it is important to 
observe that for appropriately chosen b and ~ the retrieval solution is the 
only attractor in the (m, a) plane. However, note that for sufficiently low 
the line of optimal b at given c~ enters region I (see Fig. 4). This implies that 
in this region the basin of attraction of the retrieval solution with optimal 
Hamming distance is not the whole (m, a) plane. 

For T:~ 0 we see that at low temperatures also the Q = 4 network is 
a continuously deformed copy of the T = 0  case. At sufficiently high 
temperatures the retrieval region becomes bounded in b and the region I 
disappears. As in the Q --- 3 model, the line of optimal b gradually shifts to 
b=0 .  

Finally we consider graded-response neurons. At T =  0 and for an even 
distribution of the states the fixed-point equations (14)-(15) read 

1 (2~a)' /2//  [ 
m-2A 2b ~ {X+(~)Erf[X+(~)]-X_(~)Erf[X_(~)]} 

1 (e_X+(r - e_X_(r (27) + - -  
, / ;  
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where 

l a<< a =  1 + "~ ~b--5 [I -2X+(~)X(~)]{Erf[X+(~)]  + Erf[X_(~)] } 

- - ~  [X+(~) e-X-(r X_(~) e-X+lr / / (28) 

2b + m~ 
X_(r = (2~a),/, - (29) 

Sustained activity solutions satisfy 

~a 2b { 4 b Z ~  
a =  1 - ( 1 - ~ f f s , ) E r f [ ~ ] - 2 ~ ( - ~ - ) ~ / 2 e x p \  2~a] (30) 

They have stability eigenvalues 

a,(a)--  - 1 + 5  grf (31) 

a E F 2b 1 1 ( 2 ~  '/z 4bZ~ rft J-2bk,,aj exp(- 2 ,aJ (32) 
From (31)-(32) we easily derive that Z is an attracting fixed point if both 
b>  1/2 and ~<4b  2. An expansion of (30) for small a shows that at 
~=C~s(b)=4b 2, a nonzero solution bifurcates from the solution a=0 ,  
making the latter unstable on the axis m = 0  in the (m, a)plane. For the 
corresponding solution S it is straightforward to show that 2z(a)<0. 
Consequently, the stability of S depends only on 2~(a). Numerical analysis 
shows that at fixed b, 2 , (a )>0  up to some critical value Otc(b ). 

Note that all the above conclusions are independent of the distribution 
of the patterns. To obtain detailed information about the retrieval regime, 
we assume from now on that the patterns are uniformly distributed on 
5Po~= [ - 1 ,  +1] ,  which implies A =  1/3. Abbreviating X• by X• we 
find that the fixed-point equations (27)-(28) get the form 

( m  3 3~a+4bZ'~ ( m  3 3ota+4b2 "] 
m =  ~-~+4 4m 2 ] E f t [ X + ] +  ~ - ~ +  4m z jE f t [X_]  

( )'/z[-/' l ~ a '  1 ota+2b2"~e_X2 + 
+ 2b 2bin z J 

( 1 1 ~a+2b2"~ ] 
+ 2m 2b + 2bm 2 .] e-x2- (33) 
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a = l  _ ( ~ + 2 b  3~_a+rnZ'~ 
3m 24b2 ) Eft [X+] 

(~ 2b 3~a+m2"~ 
3m - ~ -  } Err[X_ ] 

(o~a'~ 1/2 2cr q- m2~ 
3rn ~-~-~_ ) e-  x% 

(1  b 2 2~a+m z'] ] + 3m + 12mb 2 J e-x2- (34) 

For both b < 1/2 and ~ < ~c(b) there is one and only one solution (m 4: 0, 
a4:0) to (33), (34). The stability properties of S and Z imply that this 
solution is attracting. Therefore, it is a real retrieval solution, denoted 
by R. The fact that R attracts the whole (m, a) plane constitutes the main 
difference with the Q-Ising case (Q finite), where the basin of attraction of 
the retrieval state is always limited by an attractor on the axis m = 0. 

Finally, at any fixed =, again a value of b can be determined where 
the Hamming distance of R is minimal. As can be seen in Fig. 5, the 
corresponding line OPT lies close to b = 1/2. This is connected with the fact 
that at ~ = 0 the Hamming distance is 0 only for b = 1/2. 

For T4:0, the fixed-point equations [recall (16)-(18)] can be 
composed from the following expressions: 

h ( 2 )'/2 e-h2+--e -h2- 
g(h) = ~-~ + ~ Err(h+) + Err(h_) 

-- ( h )  z 2h -e -h2+-h+  e-h2- 
s2(h)= 2b +~bb q x/~flb Erf th+)+Erf(h_)  

h+ = (-~)'/~ (2~+ 1) 

(35) 

(36) 

(37) 

The solution Z no longer appears. However, the main characteristics of the 
network are comparable with the T =  0 behavior. There is one solution S 
which is a saddle point at given b up to some value Otc(b ). For ~ < O~c(b), 
a retrieval state R exists which attracts the whole (m, a) plane. At Otc(b ), R 
goes continuously to S, making the latter stable (see Fig. 6 at T=  0.075). 
As in the finite-Q models, the line OPT gradually shifts to b = 0  with 
increasing temperature. We remark that the evolution of the retrieval 
region strongly resembles the results of ref. 3 where the stochasticity has 
been introduced in a different way. 
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Fig. 5. As in Fig. 1, for the piecewise linear network with uniform patterns (A = 1/3) at 
T= 0. Above the dynamical transition line C H A O S  chaotic behavior occurs. 

5. M I C R O D Y N A M I C S :  C H A O T I C  P R O P E R T I E S  

In this section we est imate the local stabil i ty of the trajectories ~(t)  in 
the conf igurat ion space using the H a m m i n g  distance as it was proposed  in 
refs. 13-15. Specifically, we s tudy the time evolut ion of the H a m m i n g  
dis tance between two configurat ions which are initially close to each other  
and are both  corre la ted  with the embedded  pattern.  Formal ly ,  let us 
consider  two different initial condi t ions  a(t) ,  respectively, ~(t),  which are 
collections of i.i.d.r.v, with mean zero and variance ao, respectively, ~o. 
Fur the rmore ,  we assume that  they are correlated with the embedded  
pa t te rn  

1 1 
~ E [ ~ a , ( O ) ]  = 6~,.,,rno, ~ E [ ~ 6 ; ( 0 ) ]  = 6~,,,,rho (38) 

1.2 
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Fig. 6. As in Fig. 5, for T= 0.075. There is no line C H A O S .  
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whereby in (38) and in the sequel quantities with a tilde correspond to the 
configuration ~(t). Defining the overlap between the two configurations 
~(t) and ~(t) as 

1 
CA(t) =~  i~A aAt) 5i(t) (39) 

we find that the LLN yields an initial correlation 

E[a,(0) 5j(0)] = fi,.jC(0) (40) 

with C(t)= limN~ ~o CA(t). NOW we observe that 

1 dH(fA(t), O'A(t))=~- E [ai(t)-O,(t)]2=a,dt)+a~(t)-2Ca(t) (41) 

If we want to obtain information about the Hamming distance 
dn(a(t), ~(t)), it follows immediately that we have to focus on the time 
evolution of C(t)= E[a~(t)~(t)] .  This implies that we have to calculate 
the joint distribution for the dependent random variables a~(t) and O~(t). 

To this end, reconsider the local field in i [see (13)-1 

1 
h,-(6A\t(0)) = ~m~(0)+  (c~N2),/------~ 2 ~ ~. Rj,,(O) (42) 

p ~ \ v  j ~ A \ i  

�9 7 ~ fr (43) 

Because {Ri,.(0) } and similarly {/~j..(0)} are collections of coN 2 i.i.d.r.v., 
we have by the two-dimensional CLT that in the limit N---, oo 

(h~(6(0)), hi(~(0))) ~ (~i:mo + R(O), r + R(0)) (44) 

where now (R(0),/~(0)) is a couple of correlated centered Gaussians 
(independent of U) with correlation matrix 

(eta(O) K(O) ) (45) 
= \K(0)  cr 

We remark that for correlated Gaussian random variables the joint 
distribution is indeed completely defined by the correlation matrix. r But 
we also have that 

CX 
K(0) = ~ 5  E[(~f) 2 (~])2 aj(0) e~(0)] 

= ccE[aj(0) 0j(0)] = ccC(0) (46) 
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This means that in the extremely diluted version of the network, we can 
immediately conclude, using the LLN in (39) and recalling the dynamics 
defined by (6), 

C(t+ 1)=Ia2On(u, ft)((g(~"m"(t)+u) g(~fft"(t)+~))) (47) 

dud~ 
DH(u, ~) =- 

2n~[a(t) h(t) -- C(t) 2] 1/2 

{ a(t) uZ--2C(t)u~+a(t)u 2} 
x exp -- 2~[a(t) ~(t)-~C-(t)~ (48) 

We now restrict our initial conditions to the case of two configurations 
with equal overlap m(t)=th(t) and equal activity a(t)=gt(t). For con- 
venience we will also write a=a(t), m=-m(t), C=C(t), a '=a( t+l) ,  
m' = m(t + 1 ), and C' = C(t + 1 ) in the following. With these abbreviations 
the recursion for the Hamming distance (41) is equivalent to 

a ' -C '=(( IRDug2( ,~m+u)- fR2DH(u ,~)g(~"m+u)g( ,~m+f i ) ) )  (49) 

To determine the chaotic properties of the trajectories we have to expand 
(49) for small a -  C. Note that this equation is still valid for arbitrary g(. ). 
Nevertheless, it is more instructive to perform the expansion first for the 
finite-Q model with a gain function defined by (6) and with 5 " =  6e o [see 
(7)1. In this case the integration over the variable ~ in (49) can be carried 
out, yielding 

o ((fA,(,) ( 1 Q ~ rFaAk(~)-- Cu-]'~ \ \  a' C' Du sl+ (50) -- = t~']= St \\'at_ 1(r ~ k~-~.= ~rI L ~ ) x - i T T J ) / /  

where we have introduced 

b(sk + sk + 1) -- ~m 
Ak(~)-- (2~a)m , k = 0  ..... Q (51) 

In the integrand of the lth term of the first sum in (50) the terms with 
k 4= l -  I and k 4: l can be asymptotically expanded. If k > l, the contribu- 
tion is + 1; if k < l -  1, it is - 1. The terms with k = l -  1 or k = l can then 
be integrated alad expanded, yielding an expression of order ( a -  C) m, i.e., 

QE,I (( [b(st-l-St+l)--~m]211 a'-C'. .~ 4 ~ ( a - C )  m 1 exp 
~(Q-1)ka+C] Q----~ ~-~-a+C) 

(52) 

822/74/3-4-8 



580 Boll6 et  al. 

The fact that the leading contribution is of order ( a - C )  ~/2 means that 
trajectories that come sufficiently close to each other at some moment in 
time are strongly repelled after the next time-step. The retrieval and the 
sustained activity solution of a Q-Ising network (Q finite) thus exhibit 
chaotic behavior in the way we have defined it. Stated otherwise, the point 
C =  a which corresponds to the case ~ = ~ is not stable. Because in (52) the 
coefficient of ( a - C )  ~/2 is effectively proportional to Q-~, we can expect 
that in the limit Q ~ oo [i.e., the piecewise linear gain function (8)] the 
leading term will no longer be of order ( a - C )  u2. A more careful computa- 
tion starting again from (49) shows that the first term in the expansion is 
indeed linear in a -  C, 

2b + ~m 
a ' -  C' ~ ~-~ ( (Erf  [ ~ a ~ - ] )  ) ( a - C )  (53) 

Consequently, the coefficient of a - C  in (53) has to be analyzed. In the 
retrieval regime, and using the fixed-point values of m and a [see (33) and 
(34)], we find that for ~ --* 0 the behavior is not chaotic. However, for any 
b there is an ~ at which the coefficient becomes greater than unity, which 
means that the chaotic regime sets in. The corresponding line is depicted in 
Fig. 5. It is interesting to note that in the sustained activity regime (i.e., the 
case m = 0) the behavior is always chaotic. 

It is generally known that in a finite-dimensional dynamical system the 
existence of a positive Lyapunov exponent implies that the spectrum of the 
autocorrelation function is continuous, t8~ Furthermore, this autocorrelation 
exponentially decays with an exponent equal to the largest Lyapunov 
exponent. Here, too, we can make a connection between the behavior of 
the correlation (39) between two configurations and the behavior of the 
autocorrelation defined as 

Z(t + 1, t' + 1 ) = E['tr,(t + 1 ) tri(t' + 1)-I (54) 

where {ai(0)} is again a collection of i.i.d.r.v, correlated with the embedded 
pattern. It is sufficient to observe that a dynamical functional approach in 
complete analogy with the binary Ising case (see, e.g., ref. 19 and the 
references therein) results in the following recursion for the autocorrelation 
Z(t + l , t '  + l): 

X(t + 1, t' + 1) = Ia-, DH(u,  v ) ( (g (~rn"( t )  + u) g(~'mV(t ') + o))) (55) 

dudv 
DH(u,  v) = 2nct[a(t) a(t ')  - Z(t, t')2] 1/2 

x e x p {  a ( t ) u R - 2 g ( t ' t ' ) u v + a ( t ' ) v 2 }  
- 2~l-a(t) a(t ')  - Z(t, t') 2 ] (56) 
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From (47)-(48) on the one hand and (55)-(56) on the other it is obvious, 
recalling (14), that the chaotic properties of the dynamics can also be 
investigated starting from the recursion for 

dH(t~(t), ~ ( t ' ) )  = a( t )  + a( t ' )  -- 2Z(t, t') (57) 

Conclusions can be drawn from the evolution of this equation parallel to 
those arrived at by considering the evolution of (41). 

We have already observed that the chaotic behavior of the trajectories 
in the configuration space in fact means that the fixed point C = a  in 
(47)-(48) is not stable. More precisely, we find that for ct--.0 the stable 
solution to this equation deviates from the fixed-point value of the activity 
a a s  

8 {~--~: l /  ( [b(s, + &_~+~-~m ] 2.'~ \ \  ~2 (58, C ~ a  r~2a(Q_ 1)4 e x p \ -  2ota / / / J  

We remark that an analogous expression can immediately be written 
down for the limiting value of the autocorrelation function Z = 
iim,.,,_ ~ Z(t + t', t'). 

The result (58) constitutes the generalization of a well-known formula 
for networks of binary neurons [see, e.g., Eq. (6.63) in ref. 19]. 

6. CONCLUDING REMARKS 

In this paper we have derived the evolution equations governing the 
parallel dynamics at arbitrary temperatures for extremely diluted Q-state 
Ising and graded-response networks with general input-output functions. 

We have studied in detail the macroscopic structure of the retrieval 
region in the case of steplike and piecewise linear gain functions. In par- 
ticular dynamical capacity-gain diagrams have been analyzed as a function 
of the temperature for Q = 3, Q = 4, and in the limit Q --* ~ .  The properties 
of the zero solution, the sustained activity solutions, and the retrieval solu- 
tions have been determined. The line of optimal Hamming distance in the 
capacity-gain plane has been calculated. It is found that in the case of 
analog neurons .the retrieval solution attracts the whole overlap-activity 
plane, in contrast to the case of Q-state neurons, where its basin of 
attraction is always limited. 

Some microscopic properties of the networks considered as discrete 
dynamical systems have also been investigated. Specifically the Hamming 
distance between two neighboring trajectories has been used as a measure 
for the local instability and complexity of the attractors for the parallel 
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dynamics. To this end we have fixed two initial configurations by choosing 
the nonzero projection on the embedded pattern, the activity, and the 
mutual projection. For the finite-Q network it is found that two arbitrarily 
close configurations chosen in this way always repel each other, implying 
chaotic behavior, even in the retrieval regime. For the graded-response 
network, however, there exists a transition line in the capacity-gain plane 
below which no such chaotic behavior occurs. We remark that for a 
general Q-Ising network (Q > 2) the constraints to fix the initial configura- 
tions are not exhaustive in the sense that there is more than one distribu- 
tion of initial conditions which satisfy them. In fact here we have used a 
uniform distribution, which is conserved by the dynamics. Consequently, 
the distance between two distributions of random initial configurations 
could be used as a more general measure for the common evolution of 
these configurations. 
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